Histological Evidence for the Systematic Position of *Hesperornis*
(Odontornithes: Hesperornithiformes)

PETER HOUDE
Division of Birds, National Museum of Natural History, Smithsonian Institution,
Washington, D.C. 20560 USA

In his original description of *Hesperornis*, O. C. Marsh (1880) noted similarities between this Cretaceous toothed “diver” and modern ratites (Struthioniformes). Subsequently, Heilmann (1927) correctly demonstrated the ecomorphological similarity of *Hesperornis* to loons (Gaviiformes), but, in so doing, he incorrectly renounced the similarities of *Hesperornis* and ratites. Eventually, Gingerich (1973) described *Hesperornis* as possessing a paleognathous palate, but, from Gingerich’s own reconstruction, the palate of *Hesperornis* did not satisfy the criteria that collectively diagnose the paleognathous palate as described by Bock (1963) (Brodkorb 1976, McDowell 1978, Cracraft 1980, Balouet 1983). Cracraft’s treatment of *Hesperornis* is exemplary of the uncertainty that still exists about its systematic position. Cracraft (1982) concluded that *Hesperornis* was a member of a monophyletic clade that includes the neognathous loons and grebes (Podicipediformes), but, more recently, he (in press) considered it as the sister group of *Ichthyornis* plus Neornithes.

I examined the histological structure of *Hesperornis* bone as part of an effort to determine the correct polarity of histological characters in the bones of paleognathous and neognathous birds, which I treated elsewhere (Houde in press a). I was surprised to find
Fig. 1. Schematic representation of the patterns of primary osteons that are characteristically observed in the compacta of the tibiotarsi of neognathous birds, tinamous, and ratite birds, following Amprino and Godina (1944). See text for details.

that the character state of bone histology in *Hesperornis* is clearly like that of neognathous birds and unlike that of paleognathous birds.

The differences in bone histology between paleognathous and neognathous birds were determined by Amprino and Godina (1944, 1947) and Zavattari and Cellini (1956). The work of Amprino and Godina (1947), however, contained editorial errors in its discussion of paleognathous birds. The characters of greatest importance to my study were found in the femur, fibula, and tibiotarsus. In neognathous birds the vascular canals of primary osteons are "reticular" (Enlow and Brown 1956, 1957), generally branching and anastomosing randomly (Figs. 1 and 2). In tinamous, vascular canals are "longitudinal" (Enlow and Brown 1956) and predominantly oriented parallel to the longitudinal axis of the bone (Figs. 1 and 2). In ratites, the majority of vascular canals are "plexiform" or "laminar" (Enlow and Brown 1956), arranged in closely packed concentric circles that course in the transverse plane of the bone (Figs. 1 and 2).

Transverse lapidary "thin sections" of the diaphysis or distal metaphysis, or both, were made from tibiotarsi of (1) Lithornis sp. [National Museum of Natural History (USNM) 290554] (Lithornithidae), (2) Paracathartes howardi (USNM 361407) (Lithornithidae), (3) an unidentified moa [Yale Peabody Museum of Natural History (YPM PU) 11905] (Dinornithidae), (4) Eudromia elegans (USNM 345016) (Tinamidae), (5) Rhynchoscorus rufescens [Princeton University (PU) 728] (Tinamidae), (6) Rheas americana (unnumbered) (Rheidae), (7) Cuculluca cassia (USNM 429823) (Cassuariidae), (8) Apteryx australis (USNM 289727) (Apterygidae), (9) Hesperornis sp. (YPM PU 22443) (Hesperornithidae), (10) Eochoerus sp. (USNM 336571) (Eochoeridae), (11) Plegadis falcinellus (unnumbered) (Threskionithidae), (12) Crax rubra (USNM 19918) (Cracidae), (13) Anas platyrhynchos [American Museum of Natural History (AMNH) 11133] (Anatidae), (14) Cygnus olor (unnumbered) (Anatidae), (15) Thambytuchus sp. (USNM 386234) (Anatidae), (16) Galus gallus (store-bought) (Phasianidae), and (17) Bonasa umbellus (unnumbered) (Phasianidae). Specimens 1-8 are paleognathous birds; 10-17 are neognathous; 1-3, 10, and 15 are fossils of known systematic position to serve as controls for the possible effects of fossilization on bone microstructure; 11, 13, and 16 are juveniles and serve as controls for the possible effects of ontogeny on bone microstructure; and 13-15 serve as controls for the possible effect of overall size between confamilial species and also as controls for the possible effects of flightlessness (15 is flightless) between closely related species.

Lapidary thin sections were made as follows. Free specimens were embedded in Epon epoxy and allowed to cure for several days at room temperature. Specimens were then cut on a diamond lapidary saw. Care was taken to ensure that the plane of the cut was consistently transverse across all of the tibiotarsi.

Fig. 2. Bright field photomicrographs of transverse lapidary thin sections through the tibiotarsi of a neognathous bird (*Bonasa*, unnumbered), a tinamou (*Rhynchoscorus*, PU 728), and a ratite (*Casuarius*, USNM 429823). All sections are through the diaphysis, near the distal metaphysis. Vascular canals appear as thin dark lines or spots. Large dark regions are more opaque regions of bone.
The cut surface was ground with successively finer slurries of aluminum oxide on a lapiary wheel. Adherent abrasive was removed from cavities with an ultrasonic cleaner. Next, the ground surface was polished with a slurry of tin oxide on a cloth-covered lapiary wheel. The polished surface was glued to a glass slide with Epon epoxy and allowed to cure for at least 24 h at room temperature. The process was then repeated on the other side of the specimen. The grinding and polishing processes were monitored periodically and assessed by examination through a light microscope to determine when the specimen was thin enough to transmit light and to resolve structures and to avoid obliterating the specimen by excessive grinding. The thickness of the specimens was not measured. Cover-slips were used and glued to the specimen with Epon epoxy.

Specimens were examined with bright field microscopy. Photographs of thin sections were enlarged by different amounts from the original negative size so that bone microstructures in different photographs appeared to be of comparable size.

Vascular canals in the tibiotarsi of *Lithornis* and both of the tinamous were oriented primarily in the longitudinal axis of the bone, as previously described for tinamous (Zavattari and Cellini 1956) (Fig. 2). *Paracallias* and all the ratites showed the pattern described for ratite birds (Amprino and Godina 1944, 1947; Zavattari and Cellini 1956), in which many vascular canals course through the transverse plane of the bone, producing a pattern of concentric circles (Fig. 2). Sections of *Lithornis* and *Paracallias* bone are illustrated elsewhere (Houde in press b). All the neognathous birds exhibited only the randomly branching pattern of bone vascularization that is generally typical of neognathous birds (Fig. 2). The pattern of bone histology appeared to be correlated only with phylogeny (i.e. tinamous-type, ratite-type, and neognath-type). Fossilization, differences in overall size of the birds, ontogenic stage, and the birds' ability or inability to fly had no noticeable additional effect on patterns of bone vascularization. The pattern exhibited by *Hesperornis* (Fig. 3) is unmistakably like that of the neognathous birds.

Ideally, I would have preferred to use larger samples and to use control groups that varied with respect to only one character each, to ensure independence of characters. Osteological specimens must be sacrificed, however, to make thin sections. It is thus difficult to obtain comparative materials, particularly of rare and valuable fossils. *Ichthyornis* is another toothed fossil bird that ought to be compared with *Hesperornis*, but uncrushed tibiotarsi of *Ichthyornis* were unavailable. Fortunately, the present results were unambiguous.

A character must be derived and not homoplasious for it to be useful in phylogenetic analysis. The fact that patterns of vascular canals in osteons were not correlated with any of the variables for which I tested suggests that even if the different patterns of vascularization have different adaptive or developmental origins, its character state in birds is phylogenetically consistent. As with any character, caution must nevertheless be exercised in making phylogenetic inferences. The possibility for convergence in patterns of bone histology is underscored by the occurrence of ratite-like vascular patterns in the leg bones of many artiodactyls and therapsids (Enlow and Brown 1958). Moreover, descriptions of vascular patterns are generalities that simplify variation in character states between individuals and between taxa. The distinction between ratite-like and neognathous vascular patterns is not always clear-cut in all published illustrations.

Theropod dinosaurs are the logical outgroup to examine to determine polarity of these character states. Although the patterns of bone vascularization in theropod dinosaurs apparently have not previously been directly compared with those of birds, Madsen (1976: fig. 24) illustrated transverse sections of the femur and fibula of *Allosaurus* that are suitable for comparison as a primitive outgroup. In the femur of *Allosaurus*, vascular canals lie parallel to the longitudinal axis of the bone. In the fibula, however, the longitudinally parallel canals are arranged in discrete rows that form concentric circles around the long axis of the bone. Plexiform or laminar patterns of circularly oriented vascular canals, like those of ratites but not as closely packed, were found in other dinosaurs by Enlow and Brown (1957), Ricqlès (1981), and Reid (1985). Assuming dinosaurs to be the correct primitive outgroup of birds, the patterns of bone vascularization exhibited by paleognathous birds are thus the primitive character states within Aves, and the condition in *Hesperornis* and neognathous birds is derived.

Crocodiles also might be considered to be a primitive outgroup of birds, but few researchers still se-
Crocodylidae and birds (Walker 1985). Crocodiles possess longitudinally oriented vascular canals in the diaphyses of the leg bones (Amprino and Godina 1947, Enlow and Brown 1957), most like the condition observed in tinamous. But branching vascular canals, more like those of neognathous birds and *Hesperornis*, can be seen in one illustration of a crocodile femur (Peabody 1961). I cannot account for this variation. It might result if the section was made from an unusual level of the shaft, near the epiphysis, or because the specimen was extremely small. It emphasizes the importance of sample size, which is unfortunately minimal in my study.

If the dichotomy of neognathous birds and neognathous birds was the earliest divergence among the lineages of modern Aves and if tinamous and gallinaceous birds represent the earliest divergences from their respective superorders (Prager et al. 1976, Prager and Wilson 1960, Sibley and Ahlquist 1981, Stapel et al. 1984), then parsimony suggests that any similarities (e.g. lack of teeth) of tinamous and gallinaceous birds are the result of common ancestry rather than convergence. Because *Hesperornis* possesses teeth, it might be concluded that *Hesperornis* arose before neognathous and neognathous birds diverged from one another. The combination of palaeognathous and neognathous characters of the palate in *Hesperornis* suggests that this could have been so. If so, then its palatal and histological character states could be the primitive conditions for extant birds.

Hesperornis clearly exhibits a pattern of osteons like that of neognathous birds. This pattern seems to be synapomorphic. The patterns of osteons in palaeognathous birds resemble those of primitive dinosauirian outgroups. There is no insight gained by asking whether a particular pattern could be hypothetically derived from another. The only objective means of determining this is by examining the distribution of character states in taxa whose phylogeny is assumed to be known. This single character thus suggests that the true affinity of *Hesperornis* lies with neognathous birds or with a predecessor of both neognathous and palaeognathous birds. Nevertheless, many other characters do not support a relationship between *Hesperornis* and neognathes or palaeognathes (Cracraft in press). Therefore, the condition in palaeognathes may also be interpretable as a reversal.

I thank J. Cracraft and L. D. Martin for reviewing this manuscript and D. P. Domning, R. L. Hayes, S. L. Olson, and R. L. Zusi for their comments on earlier versions. D. Baird, P. D. Gingerich, L. D. Martin, S. L. Olson, and R. L. Zusi helped obtain specimens for thin sectioning. A. d. Ricqlès discussed patterns of bone vascularization with me. This work was supported by a National Science Foundation Dissertation Grant (BSR 8313209) and a Smithsonian Predoctoral Fellowship.

Literature Cited

Received 3 April 1986, accepted 18 July 1986.